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APPLICATION OF THE METHOD OF INFLUENCE FUNCTIONS IN PROBLEMS OF THE 

THEORY OF CRACKS FOR ANISOTROPIC PLATES 

V. N. Maksimenko UDC 539.3:629.7.015.4:624.07 

Application of analytical methods to estimate the strength of composite materials with 
cracks and fine inclusions is difficult due to the lack of information concerning the dis- 
tribution of stresses in a neighborhood of cracktips and inclusions of complex configuration 
in anisotropic materials. A discussion of this problem and a survey of papers in this di- 
rection (mainly for rectilinear cracks and inclusions) can be found, for example, in [I-5]. 

In what follows, based on the method of influence functions, we present a solution of 
fundamental problems of planar elasticity theory for anisotropic bodies weakened by curvi- 
linear cuts. Integral representations are constructed, which make it possible to formulate 
uniformly a solving system of singular integral equations (SIE) for the first, second, and 
mixed problems of elasticity theory. The effectiveness of the integral representations con- 
structed and of the algorithms presented for numerically solving the resulting SIE is demon- 
strated by solving a number of problems of crack theory for anisotropic plates. 

i. We consider an infinite rectilinear-anisotropic plate weakened by a system of smooth 
curvilinear nonintersecting cuts Lj = (aj, bj), j = ~ (Fig. i). We denote the angle be- 

tween Ox and the normal n to the left edge of the cut of point t~L-= U Lj by q(t). We deter- 
j=L 

mine the stress-deformation state (SDS) of such a plate caused by the action of an exterior 
load X+(t) + iY+(t) (t e L) along the edges of the cuts and by specified stresses at in- 
finity. 

Let us assume that the edges of the cuts are not in contact* and the principal vector 
of the external stresses acting on an edge of the cuts is known. We shall also assume we 
are given the complex potentials ~v0(zv), giving a solution of the problem, for a continuous 
plate, of external stresses applied at infinity. 

*In some problems it is necessary to impose a physical condition, excluding the possibility 
of an overlapping of the edges of a cut. Such problems are nonlinear and must be solved 
in an incremental setting, i.e., by stepwise changes of the loading on edges of the cuts. 

Novosibirsk. Translated from Prik!adnaya Mekhanika i Tekhnicheskaya Fizika, No. 3, pp. 
128-137, May-June, 1993. Original article submitted June 16, 1992. 
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To solve the stated problem for an arrangement of cracks L on curves, we specify certain 
continuously distributed dislocations and concentrated stresses and we determine the stress 
state caused by them in the region considered. We then select the Burgers components of the 
dislocations Q(t) and the concentrated stresses P(t) (or, equivalently, certain functions of 
them) so that the stresses on the edges of L, due to the dislocations and concentrated 
stresses, are equal to those specified. 

At a point z = x of an infinite anisotropic plate let there be applied a concentrated 
stress with vector P=X+iY or a concentrated dislocation with Burgers vector Q=U+~V [6]. 
We can write the Lekhnitskii potentials [7] stipulated by them, respectively, in the form 

Av ** BY (1.1) r (zJ = z~- ~, r ( z J = ~ _  ~ ,  

where the complex constants A~, B v are determined from conditions of equilibrium and unique- 
ness of displacements: 

2 

,..,v. { ~ - ~  (.4~, B ~ ) -  ~-~-~ (~ ,  ~)} = (/:~,/~) ( 2 ~ 0 - ' ,  

/ n = ( a 1 2 X  +a26Y)  a~ t, / l z =  Y ,  I l a =  X,  ( 1 . 2 )  

/ .  = - ("16X + a,~Y) a ~  ~, /~  = V, !~  = !~3 = 0, I=4 = U. 

From the latter relations it follows, in particular, that 

AoAI - - B o A I  + A 2  = O, aoB1 - -  boBl + B 2 = 0 ,  

Ao = (fi~q, - -  plg2)'.(f2q2 - -  p2q2) - ' ,  Bo = (fi~ql - -  filq2(p2q2 - -  fi2q2) -i, ( 1 . 3 )  

~0 = ( ~ 1 -  ' ~ 2 ) ( ~ 2 -  ~2) -1, bo = ( ~ . -  f2) (~t2- -~2)  -~, 

P~ = anPv + al~ - -  a,d',, ,  qv = a12pv + a z 2 ~ $ 1 -  a26 ( v = t , 2 ) .  

Here ~v are roots of the characteristic equation; aij are coefficients of deformation from 
Hooke's law [7]. 

Assuming that P(t), Q(t) are functions of class H on L [8], we find, with the aid of rela- 
tion (1.2), the A(t), B(t) corresponding to them; we multiply relation (i.i) by ds and inte- 
grate along L. We obtain 

qb, 1 (z,,) = I 
Av (T) ds 

, z~ ,  - -  T V ~ 
L 

I n t r o d u c i n g  t h e  c h a n g e  o f  v a r i a b l e s  

p.~ (t) = --2aiA~ (t) /M~ (t), 

r (z,,) y B,,(~) d, 
= -7=-  7 .  (1.4) 

L 

o)~ (t) = - - 2 a i B ,  (t) /M~ (t) ,  

we rewrite relations (1.4), 

dT~ = My (T) ds, 7~L (t) = ,u~ cos ,~ (t) + sin ~ (t), 

(1.3) in the form 

L L 
A (t)I11 (t) Jr B (t) ~, (t) + .Lt2 (t) = 0; 

(1.5) 

(1.6) 
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M, (t) ~ Ml(t ) M 1 (t) M (t) 
a ( t )o l ( t )+b( t )~ l ( t )+~)z ( t )=O,  A ( t ) = A o ~ ,  B ( t ) = / ~ o ~ ,  a ( t ) = a o ~ ,  b(t)=bo~-('i~" ( 1 . 7 )  

We may then  r e p r e s e n t  t h e  s o u g h t - f o r  s o l u t i o n s  o f  t h e  p rob lem f o r m u l a t e d  above  as  
2 

m~ (z~) = E m~ (~) .  ( 1 . 8 )  
j=O  

S u b s t i t u t i n g  t h e  l i m i t  v a l u e s  o f  t h e  f u n c t i o n s  Cv(zv)  from Eq. ( 1 . 8 )  i n t o  t h e  bounda ry  
conditions on L 

a (t) m~ (tx) -5 b (t) 6~{ (t~) @ O{ (tz) ---- F + (t), t ~ L, ( i .  9) 

F • (t) = {X~ (t) + L r ~  (t)} {(:~ - L) M~ (t)}-' 

and s u b t r a c t i n g  t h e  second  e q u a t i o n  from t h e  f i r s t ,  we o b t a i n  

a( t )~ t , ( t )+b( t )~ ( t )+p2( t )=F~( t ) ,  F~( t )=F+( t ) - -F- ( t ) .  ( 1 . 1 0 )  

Using the relations (1.6), (i.i0), we readily establish that the functions ~v(t) may 
be expressed explicitly in terms of jumps in the stresses X(t) = X+(t) - X-(t), Y(t) = Y+(t) - 
Y-(t) at the edges of the cuts. 

Adding the two limit equations and subtracting the relation (1.7), we find, after some 
simplifications, the basic SIE of the problem: 

! o~1 (x)  d'r , f ,  @ j  {K n (t, T) ~0~ (T) + Kaz (t, x) r (r)} ds = 1~ (t), 
L 

t { ~2--to b(x)--b(t) d~.}, 
h"x~(t, T ) d s = ~  dln  ~ - - 7 :  + b(t----~(.~ _72 ) - 

t ( T'o--~ -5 a(~)--a(t) d~2} 
K l : ( t , ~ ) ~ s = -  s dl ,~- '  7 ~ ( ~ < - ~ )  ' 

/* (t) =/i (t) --  ~ {K~a (t, z) ~q (v) + K~,(t, z) tq ('0} ds, 
L 

, t [ d~ I B (~) dr~ }, 
~1~(t, ~)d~=~-/T~Z-+ b(t)(<_ b 

Kl~(t,T) ds=-~  b (t) (T: -- 7:) b(t-~(~l--71) ' 

(i.ll) 

/x (t) ---- ~ {F 2 (t) - -  2 [a (t) (I)i0 (tl) -5 b (t) (I)10 (tl) -5 q)2o (ti)]}i 

F 2 (t) = F + (t) -- F -  (t). 

Taking r e l a t i o n s  ( 1 . 5 )  i n t o  a c c o u n t  and t h e  r e l a t i o n s  ( s e e  [ 7 ] )  

(u, v) = 2 I b  (p,,, q,) ~ ,  ( z , ) ,  % (z~) = ~ ,  (z~) 

we f i n d  t h a t  t h e  jump in  t h e  d i s p l a c e m e n t s  w ( t )  = [ (u  + i v )  + - (u + i v ) - ]  on Lj ( j  = 1, n) 
has the form 

w ( t ) =  (pv-?iq,) coy (~) d~. + ( L  + / q  v d % .  ( 1 . 1 2 )  
ai a i 

Using the relations (i.12), we readily ascertain the physical essence of the unknown 
functions ~v(t). Differentiating relation (I.12), we find that 

2 

d_~w = Z {(Pv -5 iqv) My ( t) (o,. ( t) -5 (Tv -5 iqv) My ( t) o) v (t)}. ( 1 . 1 3 )  ds 

I t  t hus  f o l l o w s  from r e l a t i o n s  ( 1 . 7 ) ,  ( 1 . 1 3 )  t h a t  t h e  v a l u e s  o f  ~ v ( t )  a r e  d i r e c t l y  c o n n e c t e d  
w i t h  t h e  d e r i v a t i v e s  o f  t h e  jumps of  t h e  d i s p l a c e m e n t s  on t h e  edges  o f  L. 

From c o n d i t i o n s  of  c o n t i n u i t y  of  t h e d i s p l a c e m e n t s  a t  t h e  c r a c k  t i p s  and r e l a t i o n  ( 1 . 1 2 )  
we obtain 
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P 

J %(~)d~,  = 0 (] = t ,  n). ( 1 . 1 4 )  
Lj 

Equations (i. Ii) and (1.14) furnish a solution of the stated problem. For the particular 
case of a self-balanced continuous loading [Fl(t) = ~v(t) = 0] the results given in [i, 4], 
obtained by another method, follow from relations (1.5), (i.ii), (1.14). 

Since the number of conditions, which the unknown functions m~(t) must satisfy, coincides 
with the number of SIE over corresponding contours of L, the solution of system (i.ii), (1.14) 
must then be sought in the class of functions unbounded at the ends of the cuts [8]. 

If the cuts are specified along a straight line, the solution of the problem, according 
to [8], can then be obtained in closed form. For example, for a plate with the crack L = 
{a <~ x ~ ~; g =0} along an interval of the real axis loaded by means of stresses ~i, + ~ y Tz:y, Oy,  Txy 

over edges of the cut and at infinity, the integral equation (i.ii) takes the form 

~ j " r - -  t =H( t )@, '~ -F  " r - -  t ' 

L 
a- _u 1 -- oo oo --I t t ( t)  = { ( ' r = ~ + ' r ; ~ ) A -  p=((~,j v - % ) + 2 ( ' r . ~ +  p.o% ) l  {2 (t-h - -  p=)} , 

h (t) = {('r + - -  T~,) + ~.~ (~+ - -  07)1 {2 (!h --  ~1-2)} -1, 

and its general solution 

i [ X ('r)//(T) 2C 
~0~(t)=h(t)+ a~x(t) ~ 7:=7 d~+x( t ) ,  

L 

w h e r e  C i s  an unknown c o n s t a n t .  

After some transformations, we find 
_L 

' I_• f~(~-~ 

! + - '  + - -  [ 2,-(~+,)1 ~ }  I "2', y Y oc c~ C 

2,~x (=0. T - ~ zx ( , )  , (1.15) 

S o+ _L - + 

(1.16) 

= = [ 2 =  - -  (a-}- [3) 
- ( ~ , ~  + ~ )  t - -  ' f x ( ~ )  

6, _ ~ )  c _ ( ~  _ t , ~ ) ~ /  
j" 

To determine C, we find, from conditions for uniqueness of displacements, the equation 

C = [(X + F f r )  [A(P2 + iq~ + B) + B ( p ;  --  iq~-- A)] - -  

- ( x  + . : r )  [~  (p~ + iq; - A) + ~ (7: - -  &; +~)]} {2~i (I A I~ - -  I B I~)} -~, 

A = {(p~ + ~q0 ( ,~ --  L ) -  (P~ + ~ q ~ ) ( ~ -  ~2) + 

+ (~ + ~) (~ , -  ,u~)l [2 (~ --~)J-~, 
B = {(7, + ~)(,~ --  ,~)  --  (p~+ ~q~)(L --  L )  + (L. + ~G~) (~,-- ~)} [2 (~ - -  L ) ]  -~, 

x + I + l - 
L 

Restricting the discussion to the case of an orthotropic material with ~v = i~v (v = i, 
2) and a crack L = {Ixl < a; y = 0}, loaded along the upper edge of the interval b < x < c 
(-a < b < c < a) by a constant pressure and by tangential stresses o and ~, we obtain from 
relations (1.15), (1.16) the stress intensity coefficients (SIC) of separation and shear at 
the crack tips: 

C o (:;+aros,o 

- -  a r c s i n  -}- 2 ~ - - - - - ~ - a / ~  ~ [~,~2-}- i , 
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K 2 (___+ a) = - -  ~ L all 

*'l/h- {__. " b ~ 

2. We now consider the problem formulated above when on the cuts L there are specified 
the displacements 

(u + iv) + = G -+(t) = g~(t) + ig# (t), t ~  L. ( 2 . 1 )  

We shall assume that the principal vector of external stresses, acting on edges of the 
cuts Lj, is known: Xj + iYj, and the functions G-+(t) satisfy, at the tips aj, bj of cut Lj, 
the continuity condition 

G+(aj) = G-(ai), G+(b~) = G-(b~). ( 2 . 2 )  

To the boundary conditions (2.1) we can attach the form 

w • (t) = ( L  d ~  - e ~  ~ -  - -  q2 -~-)  {(P=q2 - -  P ~ )  M~. (t)} - t .  ( 2 . 3  ) 

S u b s t i t u t i n g  Cv(zv)  from Eq. ( 1 . 8 )  i n t o  Eq. ( 2 . 3 ) ,  and s u b t r a c t i n g  t h e  second  e q u a t i o n  
from the first, we obtain 

A(t)co~(t) + B(t)eo~(t)+ 0)2(t)= W~(t), W , ( t ) =  W+(t)--  W-(t).  ( 2 . 4 )  

From relations (1.7), (2.4) we determine ~v(t) and, proceeding, we assume that they and 
the potentials Cv2(zv) from relations (1.5) are known. 

Adding the limit equations (2.3) and taking relation (1.6) into account, we find, simi- 
larly, the basic SIE of the problem: 

y~l  (~)d~ S * "c -- t + {[(2~ (t. 7")!h (r) + K~_~_ (t, T) ~t h (v)} ds = f~ (t), 
L I 1 L 

K2~(t,T)ds=- ff d l n ~ + g . ~ ( ~ 2 _ t , ) ~ ,  el' 

} , "~2--t2_1_ A('~)--A(t) dr~ I s  B ( t ) ( v _ 7 2  ) ' 

1" (t) = 12 (t) -- .[ {K2~ (t, T) 0 h (~) + K2a (t, "~) o)~ (~)} ds, (2 .5 )  
L 

1, (t) = ~ { W ,  (t) --  2 [A (t) q)~o (t~) +B(/)*,o (t 0 + qb~o ('/~] l, 

I la(!) dVv2 A(t) d~ 1 1, 
K=~( t ' z )ds=- f f [B( t )~ - t ,  B (t) ~ ; ~  ~lj 

w ~  (t) = w + (t) - w -  (t).  

From r e l a t i o n s  ( 1 . 9 ) ,  ( 2 . 2 )  i t  f o l l o w s  t h a t  t h e  s o u g h t - f o r  f u n c t i o n  must  be s u b j e c t e d  
to  t he  a d d i t i o n a l  c o n d i t i o n  

~ ~ (z)d~, = a~ (~ = 1---.-~), 
r. ( 2 . 6 )  

1 ( . ,  - ~,) - ( ~  - L )  ~o ! ~ + t ( L  - L ) -  ( .~ - L )  % 1 ~ 

Assume t h a t  on t h e  c u t s  Lj ( j  = 1, k; k < n) t h e  boundary  c o n d i t i o n s  ( 1 . 9 )  a r e  s p e c i f i e d ,  
and that on the cuts Lk+ x .... ,L n the conditions (2.3) are specified. In this case the sought- 

h 

for solutions have the form (1.8). For determining the unknowns 0~(t) for t~L~= U L~ and 
n J = 1  

or(t) for t ~ L ~  = O L~ we obtain the sys6em of SIE 
~=k+, 
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~01 ('~) dT 1 

L~ 

+ ~ {K~.~ (t. ~)~,~ (~) + K~ (t. ~) !'1 (~)} d~ = l~* (q), t ~ LI; 
L2 

( 2 . 7 )  

~ i (3) dT I 

c 2 zz ( 2 . 8 )  

]~* (t) = / i  (t) - [ {K,~ (t, ~1 ~t (T) + K14 (t, T) ~1 (~}  ds - -  
L~ 

L2 [T1 _ il + K~I (t, T) O) 1 (r) + K12 (t, x)(')I (V). ds, 

i;* (t) = i2 (t) -- !o { K"3 (t' T) ~I (~) + K'4 (t' T) ~I i~} ds - C I '~ (T-~) ~I } d% 

It is necessary to supplement Eqs. (2.7), (2.8) with the conditions (1.14) for j = i, k and 
with condition (2.6) for j = k + I, n. 

We may solve, in a similar way, with the aid of the potentials (1.8), the problem arising 
when displacements are specified on one edge of the cuts of L and stresses are specified on 
the other edge~ 

The integral representations (1.5) constitute a general solution, and with their aid we 
can study very diverse boundary value problems for domains with cuts and linear inclusions. 
In particular, upon satisfying, with the aid of the representations (1.5) and formulas (1.9) 
and (2.3), the boundary conditions for an anisotropic plate with cuts, in which on one edge of 
a cut stresses are specified while on the other edge displacements are specified, we obtain SIE 
on the second kind. Upon using the conditions for non-ideal contact of elastic bodies, in 
which stresses and displacements of the edges of the cut are connected by linear relationships 
(see [3, 4, 9]), we can obtain singular integrodifferential equations of Prandtl type for 
bodies with thin-walled elastic inclusions. The integral representations obtained can also be 
applied in the solution of various mixed (contact) problems for bodies with cuts, problems 
involving strips of plasticity modeled by means of jumps in displacements [9]. 

3. The SIE (i.ii), (2.5), (2.7), and (2.8) belong to the type of equations studied in 
detail in the literature [8]. In the class of functions unbounded close to the endpoints 
aj, bj (in the class H~) the index of the SIE is equal to • | (see [8]); these equations 
are always solvable and their solution on each arc Lj contains a single arbitrary constant, 
appearing linearly. With fulfillment of conditions (1.14), (2.6) the solution of the given 
equations is unique. 

Thus the solution, for example, of Eqs. (i. II), (1.14) can be represented in the form 

o l ( t ) =  ]/(t_aj)(t_b S t~L~ (i=~,n), 

where  ~ ( t )  i s  a f u n c t i o n  o f  c l a s s  H on Lj in  a n e i g h b o r h o o d  o f  e n d - p o i n t s  o f  a c u t ;  

/ ( t  - a ) ( t  - b j )  i s  an a r b i t r a r i l y  d e f i n e d  b r a n c h ,  v a r y i n g  c o n t i n u o u s l y  on L j .  

Le t  t h e  e q u a t i o n s  o f  a r c s  Lj be d e s c r i b e d  by t h e  r e l a t i o n s  t = T J ( q ) ,  a j  = T J ( - I ) ,  b j  = 
~ J (1 )  (q i s  a d i m e n s i o n l e s s  r e a l  p a r a m e t e r ) .  We assume f u n c t i o n s  ~ J ( q )  t o  be c o n t i n u o u s l y  
d i f f e r e n t i a b l e  on [ - 1 ,  1 ] .  A f t e r  a change  o f  v a r i a b l e s ,  Eq. ( 1 . 1 1 )  can  be w r i t t e n  in  t h e  
form of a system of SIE: 

f Fj (L n) ~j (~) dn 

=~ v=l - I  ( 3 . 1 )  
~1 (t) = ~ [T~ (~)] = ~ ($) = x~ (D (l - $~)-~*, 
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= q < n ) - ~ {  (~)' ~ = d-i' D g) = h [~J(~)], 

(I 6j~) (n) 

(6p is the Kronecker symbol). We write conditions (1.14) as 

1 

j' X:(ll) T{(G) dq = () ( / =  l-~n). ( 3 . 2 )  
--1 

With the aid of the Gauss-Chebyshev formulas we reduce the solution of Eqs. (3.1), (3.2) 
to the solution of a system of linear algebraic equations with respect to approximate values 
of the sought-for functions X3(~) (j = i, n) at the Chebyshev nodes $i = cos(2i - I)~/(2M)) 
(i = 1, N). Theoretical estimates of the convergence of this numerical method are given, for 
example, in [i0]. 

, 0 0 + 
Knowzng Xj($i) and Xj(_I), we obtain, based on relations (1.5), (1.6), and (2.4), asymp- 

totic formulas for stresses in the neighborhoods of c = ~J(-+l), the endpoints of the cut Lj 
(in what follows we omit the subscript j): 

lira V ' ~  (a~, T:,~, % ) =  Re/(-+- - -  ~,i " I )Cv(  tT)j, 
' V = I  

C, (6)---- ~,  [M, (c) (cos ~ + Ix, sin 8) - l ]  1/2, z - c : re i~, 

~ l = Z ~ 1 7 6  ~ o ( q ) = i x  i [ T ( q ) ] ( l _ ) l  2) 1i2, 

9.2= - -a(e)E~ - -  b (c)Z0(~l )  - -  A (c)~b~ B ( e ) ~ ~  

we also obtain values of the SIC of separation and shear, namely, Kl, K= [4]. 

The SIE, obtained above, for basic problems of elasticity theory for systems of smooth 
curvilinear cuts can be also used for handling piecewise-smooth curvilinear cuts (broken-line 
cuts and branching cuts). Here a cut is split up into smooth portions having common points 
of intersection; also, application is made of a well-recommended simplified procedure for 
numerically solving the SIE (3.1) and (3.2) that arise, with fixed singularities [9], making 
it possible to bypass a study of the nature of the behavior of the sought-for functions in 
neighborhoods of corner points. 
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TABLE i 

0,~[ 

0,05 

O,i 
0,5 
i~o 

O,i 
0.5 

O,t 
0,5 
l,O 

0,27 
0,05 
0,02 

0 

( •  a) 

0,t5 
o,oo~ 

0 

0 

o,003 
0 

o, 2 
0 

N 

0,27 
0,05 
O,Ol 

0,12 
o,oo~ 

(:h b) 

O,oO3 
0 0 0 

0,i7 O,iO 
0,02 0 

0 0 

0,05 0,02 
0 0 
0 0 

0,05 0,02 
0 0 
0 0 

The representations (1.5) and (1.8), and the algorithms for numerically solving the 
pertinent SIE, have proved to be an effective instrument for determining the SDS in a neigh- 
borhood of endpoints of cuts of complex form in anisotropic and isotropic plates. By way of 
illustration, we present below the results of a numerical solution of a series of model prob- 
lems of fracture mechanics. 

In Fig. 2, for plates of an orthotropic material (E x = E l = 53.84 GPa, Ey = E 2 = 17.95 

GPa, G12 = 8.63 GPa, Vy x = ~i = 0.25), we present correction functions for the SIC for sepa- 
ration and shear, kl, 2 = Ki,2/(a/~ ) (descending and ascending curves, 2Z* is the crack 
length) at the upper endpoint of a crack L, situated on an arc of an ellipse [a I = a, b I = 
(a cos % + ib sin %), crack tip], as functions ~f a ~arameter % for various ratios of ellipse 

= 0. The horizontal curves k I = i, semi-axes, I = a/b, for the loading o x = o, oy = ~xy 
k2 = 0 correspond to the value Kl, 2 at the ends of a rectilinear crack (I = 0). The calcu- 
lations testify to the good convergence of the algorithm for weakly and strongly anisotropic 
materials (I ~ E,/E2 ~ 25): already for N ~ 5 we have agreement in the first three significant 
figures. 

We consider a symmetric system of three cracks L I = {Ix I < a; y = 0}, L2, 3 = {b < }x I < 
c; y = 0}, loaded by a constant pressure (Fig. 3), and we limit the discussion to the case of 
an orthotropic material with Uv = iSv ($v > 0) for (c - b) < 2a (the end cracks are not larger 
than the central crack). From relations (1.8), (i.ii), and (1.14) we find that (I = 3 - v) 

r  = ~-~ 2 R ( ~ )  ' 

x a dx z dx 

b V ( ~  - ~) (~ - b ~) ( ~  - ~ )  V ( ~  - ~) (~ - b ~) (o~ - ~) 
R ( z )  = ~ ( :~  - -  a 2) ( z  ~ - -  b=)' (z  2 - -  c D ,  R ( z )  ~ z 3, z ~ ~ .  

The integrals in C can be put in the form of complete elliptic integrals. The stress dis- 
tribution Oy on the x axis coincides with the distribution for an isotropic body, and the SIC 
for separation at the tips x = • y = • of the cracks LI, L2, z assume the form 

K [  (4- a) = ~ ] / ' ~  (c ~ - -  a~) 1l~ (b 2 - -  c~) -I]~ E (k) lK* (k), 

K [  (4 -  b) = ~ ] / ' - ~  (b ~ - -  a~) 11~ (c 2 - -  b ~ ) - W ~ [ ( c ~ - - a D E ( k ) i ( b 2 - - a D K * ( k ) ] - l - - l } ,  

where K*(k) and E(k) are complete elliptic integrals of the first and second kinds with 
modulus k = (c 2 - b2)I/2(c 2 - a2) -I/2 [ii]. 

A comparison of the calculated values of Kl(• Kl(• with the exact values of K~ is 
shown in Fig. 3 and in Table i. As a measure of the error of the numerical solution we take 
the relative error g = IKl -- K~I(K~) -l at the crack tips a and b (continuous and dashed 
curves) as a function of the relative size of the cross section 6 = (b - a)/a for a distinct 
number N of subdivision nodes and crack-size ratios 5 = (c - b)(2a) -I = i; 0.i; 0.5 (Fig. 3a, 
3b, and 3c, respectively). The calculations show that for a cross-connection between tips of 
the cracks L l and L2,3, (6 > 0.2), that is not too small and with b < I, satisfactory accuracy 
is already attained when N~3. As b decreases and 6 increases convergence gets better. 
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Fig. 4 

In Fig. 4 we present the results of calculations for the SIC of separation and shear, 
KI, 2 (continuous and dashed curves) at the tips of a three-link broken-line crack, consisting 
of two curvilinear cuts (along arcs of a hyperbola with identical axes of magnitude a) start- 
ing from the endpoints of rectilinear cut A = {z =aNe~<~i4~IINl < i) as a function of parameter 
=, characterizing the size of the defect. The data are shown for an isotropic (EI/E 2 § i, 
curve i) and for an orthotropic material (boroplastic: E l = 276.1GPa, E 2 = 27.61GPa, G12 = 
10.35 GPa, ~i = 0.25) for angle values ~= 0; ~/4; v/2; 3~/4 (curves 2-5) formed by the prin- 
cipal direction of anisotropy E I with the x axis. Calculations for strong (EI/E 2 = i0) and 
weak (EI/E 2 § i) anisotropic material show that already for N~ 10 (N is the number of Cheby- 
shev nodes at smooth links) coincidence of K I to the first three significant figures is ob- 
served. 
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